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Trees at an Interface

E. J. Janse van Rensburg1
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A lattice tree at an interface between two solvents of different quality is
examined as a model of a branched polymer at an interface. Existence of the free
energy is shown, and the existence of critical lines in its phase diagram is
proven. In particular, there is a line of first order transitions separating a
positive phase from a negative phase (the tree being predominantly on either
side of the interface in these phases), and a curve of localization�delocalization
transitions which separate the delocalized positive and negative phases from a
phase where the tree is localized at the interface. This model is generalized to
a branched copolymer which is examined in a certain averaged quenched
ensemble. Existence of a thermodynamic limit is shown for this model, and it is
also shown that the model is self-averaging. Lastly, a model of branched
polymers interacting with one another through a membrane is considered. The
existence of a limiting free energy is shown, and it is demonstrated that if the
interaction is strong enough, then the two branched polymers will adsorb on
one another.

KEY WORDS: Trees; phase transition; adsorbing; localization�delocalization;
branched copolymer; self-averaging.

1. INTRODUCTION

Models of self-avoiding walks and lattice trees which interact with an inter-
face (the polymer adsorption problem) continues to receive considerable
attention. The problem was introduced more than two decades ago, (1, 2)

and has received considerable attention since. Further study of various
aspects of the polymer adsorption problem was carried out by De'Bell and
Lookman, (3) Vanderzande, (4) Vrbova� and Whittingtons, (5, 6, 7) Janse van
Rensburg, (8, 9) and Eisenriegler.(10) The problem was also considered for
models of copolymers(11) and branched copolymers, (12) where the issue of
self-averaging in these models was considered.
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Let tn be the number of lattice trees with n vertices, counted modulo
translation, in d dimensions. The coordinates of a vertex V will be denoted
(X(V ), Y(V ),..., Z(V )), with Z(V ) the d th coordinate. The hyperplane Z=0
will also be an interface which divides the d dimensional space into two
half-spaces, a positive half-space with vertices with positive Z-coordinate
( positive vertices), and a negative half-space with vertices with negative
Z-coordinates (negative vertices). Vertices in the tree which are contained
in the hyperplane Z=0 are called visits. The growth constant of lattice trees
is defined by

{d= lim
n � �

[tn]1�n in d dimensions (1.1)

and this limit is known to exist.(13) Moreover, tn�{n
d for all n>0.

A tree counted by tn is said to be attached if it has a vertex V such that
Z(V ) # [&1, 0, 1].2 The number of attached trees with n vertices and v
visits to the plane Z=0 will be denoted by t>

n (v). An attached tree is a
positive tree if it does not have any negative vertices. The number of
positive trees with v visits will be denoted by t+

n (v). A negative tree is
likewise an attached tree with no positive vertices. By reflection, the num-
ber of negative trees with n vertices and v visits is equal to the number of
positive trees with n vertices and v visits: t&

n (v)=t+
n (v), and notice that

t+
n (0)=tn as well. The partition functions of models of attached and

positive trees which interacts with the Z=0 plane are(9, 12)

t>
n (z)= :

n

v=0

t>
n (v) zv, t+

n (z)= :
n

v=0

t+
n (v) zv (1.2)

where z is an activity conjugate to the number of visits.3 The existence of
limiting free energies in these models are known, (9) and are defined by

F>(z)= lim
n � �

1
n

log t>
n (z), F+(z)= lim

n � �

1
n

log t+
n (z) (1.3)
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2 Attached trees are usually defined by rooting a vertex of the tree in the surface. Constructive
techniques are more complicated if the tree has a root (it destroys translational degrees of
freedom) since the rooted vertex enjoys special status, and must be treated separately. This
alternative definition for an attached tree avoids the creation of a root, and simplifies the
constructions leading for example to the existence of a limiting free energy.

3 Observe that I use the argument of the function to distinguish between the number of trees,
and its generating function. In particular, the symbol ``v'' will always indicate the number of
visits, and its generating variable (``conjugate'' to v) will be z. That is, if tn(v) is the number
of trees with n vertices and v visits, then tn(z) is its generating function, defined by tn(z)=
�v tn(v) zv. This convention is analogous to the generating function notation g(x)=�n gnxn,
where g(x) and gn are distinguished by their arguments.



Microcanonical density functions of visits are also known to exist in these
models;(9) they are defined via the Legendre transforms of the limiting free
energies above:

log P>(=)= inf
z>0

[F>(z)&= log z]= lim
n � �

1
n

log t>
n (w=nx)

(1.4)

log P+(=)= inf
z>0

[F+(z)&= log z]= lim
n � �

1
n

log t+
n (w=nx)

Naturally, (14)

F>(z)= sup
0<=<1

[log P>(=)+= log z]
(1.5)

F+(z)= sup
0<=<1

[log P+(=)+= log z]

The limiting free energies in Eq. (1.3) are non-analytic functions of z. In
particular, there are critical values of z, namely z>

c and z+
c , such that

F>(z) {=log {d

>log {d

if z�z>
c

if z>z>
c

(1.6)

F+(z) {=log {d

>log {d

if z�z+
c

if z>z+
c

It is known that 1�z>
c <z+

c �{d �{d&1 , where {d&1 is the growth constant
of trees in (d&1) dimensions. In addition, the following relation involving
z+

c and z>
c are known:(9)

z+
c

z>
c

�- 1+{&1
d , z+

c �1+{&1
d (1.7)

and it is also a conjecture that z>
c =1. The critical values of z can be

defined in terms of the density functions by(14)

log z+
c =&_d+

d=
log P+(=)&==0+

(1.8)
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and similarly for z>
c . Many of these results were derived in terms of a

model of adsorbing and collapsing lattice trees (similar results are known
for models of adsorbing and collapsing walks and polygons(5�7, 9) and the
density function for adsorbing and collapsing polygons has also been
examined(8)).

In this paper a model of branched polymers at an interface is
examined. In particular, let t>

n (v+ , v&) be the number of attached trees
with v+ positive vertices and v& negative vertices (and consequently
n&(v++v&) visits in the interface Z=0). The partition function of this
model is defined by

t>
n (z+ , z&)= :

n+1

v+, v&=0

t>
n (v+ , v&) zv+

+ zv&
& (1.9)

and it is apparent that this model is related to the model of adsorbing
attached trees with partition function t>

n (z). In Section 2, I consider the
limiting free energy of this model, and shows that it is a non-analytic func-
tion. A likely phase diagram which includes a line of first order transitions
which meets a curve of localization�delocalization transitions in a triple
point is proposed and discussed in Section 2.2. In Section 3 a branched
copolymer version of this model is discussed. Existence of the free energy,
the general structure of the phase diagram, and self-averaging in an
averaged lexicographic quenched ensemble are all examined.

A model of two branched polymers interacting with one another
through a membrane can be defined by two lattice trees rooted in the
origin and each confined to a half-space. The interaction between the trees
is defined by an activity of shared visits (contacts) in the Z=0 plane.
I show that if the interaction is strong enough, then the trees will adsorb
in the membrane, with a density of contacts, regardless of the quality of the
solvent on either side of the membrane. Since both trees are random struc-
tures, this is also a model of a branched polymer interacting with a random
environment.(15) More precisely, consider the visits of one tree to the mem-
brane to alter the properties of the membrane. Then one may think of the
membrane as consisting of two types of vertices, randomly (but not inde-
pendently) distributed. The second tree interacts with these vertices in the
membrane, and may be thought of as adsorbing onto a membrane with a
random chemical structure. I solve for this model in an annealed ensemble
here, where both trees are taken to infinity to define the critical limit.
A potentially more interesting case would involve a quenched model, or a
model where the trees are taken to infinity independently. It should be
apparent to the reader that different outcomes will be encountered in these
cases, but I shall leave them for a subsequent paper.
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2. TREES AT AN INTERFACE

2.1. The Limiting Free Energy

The existence of a thermodynamic limit in a model of trees defined by
the partition function t>

n (z+, z&) in Eq. (1.9) follows from the basic con-
struction of concatenation.(13, 16, 17) Consider Fig. 1. Two attached trees are
present, one with n vertices, and the second with m vertices. These two
trees must be joined into a single tree, and this is most easily achieved by
using a most popular height argument.(2, 14) The top vertex in an attached
tree is its lexicographic most vertex, and the bottom vertex is its lexicographic
least vertex. Let t>

n (v+ , v& | [hthb]) be the number of attached trees with
a top vertex t such that Z(t)=ht and a bottom vertex b such that
Z(b)=hb . The partition function of these trees is defined by

t>
n (z+ , z& | [hthb])= :

v+ , v&

t>
n (v+ , v& | [ht hb]) zv+

+ zv&
& (2.1)

and there are ``most popular'' values ht* and hb* (which are dependent on
n) for hb and ht such that

t>
n (z+ , z& | [ht*hb*])�t>

n (z+ , z& | [hthb]) (2.2)

for all values [ht hb]. With these definitions, the existence of a thermo-
dynamic limit can be demonstrated.

Theorem 2.1. The limiting free energy for attached trees at an
interface exists and is defined by

F(z+ , z&)= lim
n � �

1
n

log t>
n (z+ , z&)

Fig. 1. Concatenation of two attached trees. The top vertex t and bottom vertex b has the
same Z-coordinate, and by adding the dashed edge between them a new tree is found.
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Proof. Consider first a model of attached trees with top and bottom
vertices at the same height from the Z=0 plane (or with the same Z-com-
ponent: Z(t)=Z(b)=h). Translate two such trees parallel to the interface
until the top vertex of the first is one step from the bottom vertex of the
second, and join them into a single tree by adding an edge between these
vertices (see Fig. 1). If the first tree has n vertices, v+&w+ positive vertices
and v&&w& negative vertices; and the second has m vertices, w+ positive
vertices and w& negative vertices, then the outcome is a tree with n+m
vertices, v+ positive vertices in the positive half-space and v& negative
vertices. Thus

:
v+

w+=0

:
v&

w&=0

t>
n (v+&w+ , v&&w& | [hh]) t>

m (w+ , w& | [hh])

�t>
n+m(v+ , v& | [hh])

Multiply this by zv+
+ zv&

& and sum over v+ and v& . This gives

t>
n (z+ , z& | [hh]) t>

m (z+ , z& | [hh])�t>
n+m(z+ , z& | [hh])

Hence, t>
n (z+ , z& | [hh]) is a supermultiplicative function for every value

of z+ and z& in [0, �). By a general theorem on supermultiplicative func-
tions(18) the following limit exits:

lim
n � �

1
n

log t>
n (z+ , z& | [hh])=F(z+ , z&) (2.3)

and it is finite since t>
n (z+ , z& | [hh])�t>

n [max[1, z+ , z&]]n+1. Next,
consider the fact that [hh] can take at most most 2n+1 different values in
an attached tree with n vertices. Let [h*h*] be the most popular of these
values, and notice that the limit in Eq. (2.3) is also defined for these choices
of h.

There are most popular values for ht and hb in t>
n (z+ , z& | [hthb]) in

Eq. (2.2), denoted by [ht*hb*], such that

t>
n (z+ , z&)= :

[hthb]

t>
n (z+ , z& | [hthb])�(2n+1)2 t>

n (z+ , z& | [ht*hb*])

Next, notice that a tree counted by t>
n (z+ , z& | [ht*hb*]) can be con-

catenated with a tree counted by to t>
n (z+ , z& | [hb*ht*]), by using the

construction above. This shows that

[t>
n (z+ , z& | [ht*hb*])]2�t>

2n(z+ , z& | [ht*ht*])
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where the fact that t>
n (z+ , z& | [ht*hb*])=t>

n (z+ , z& | [hb*ht*]) was used.
These inequalities give the following string of inequalities:

t>
n (z+ , z& | [h*h*])�t>

n (z+ , z&)= :
[hthb]

t>
n (z+ , z& | [hthb])

�(2n+1)2 t>
n (z+ , z& | [ht*hb*])

�(2n+1)2
- t>

2n(z+ , z& | [ht*ht*])

�(2n+1)2
- t>

2n(z+ , z& | [h*h*])

Take logarithms of the above, divide by n and let n � �. By the squeeze
theorem for limits, and by Eq. (2.3) above,

lim
n � �

1
n

log t>
n (z+ , z&)=F(z+ , z&)

This completes the proof. K

The limiting free energy F(z+ , z&) is in fact related to the limiting
free energy of attached trees adsorbing in the Z=0 plane, given by F>(z)
in Eq. (1.3). In particular, if z+=z&=z, then

:
v+ , v&

t>
n (v+ , v&) zv++v&= :

n+1

v1=0

:
v1

v2=0

t>
n (v1&v2 , v2) zv1= :

n+1

v=0

t>
n (v) zn&v

(2.4)

where it was noted that trees counted by to t>
n (v1&v2 , v2) all have exactly

n&v1=v visits. Comparison with Eq. (1.3) shows that

F(z, z)=F>(1�z)+log z (2.5)

Thus, some information about F(z+ , z&) along the diagonal in the
(z+ , z&)-plane can be obtained by considering the known properties of
F>(z). It follows immediately that F(z+ , z&) is a non-analytic function.
In fact, there is a non-analyticity in F(z, z) for z somewhere in the interval
[{d&1�{d , 1], and the conjecture that z>

c =1 implies that F(z, z) is conjec-
tured to be non-analytic at z=1.

2.2. The Phase Diagram of Trees at an Interface

There are non-analyticies in F(z+ , z&) at points other than the con-
jectured non-analyticity at the origin. In particular, non-analyticities corre-
sponding to phase boundaries between a localized and a delocalized phase
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should be present. The connection to adsorbing attached trees pointed out
above indicates that there is an adsorbed phase in this model (which will
be refered to as the ``localized'' phase).

To demonstrate the existence of phase boundaries, consider the follow-
ing argument: Translate an attached tree counted by t>

n (v+ , v&) in the
Z-direction, until all its vertices are positive. Since each such translation
gives a unique outcome,

t>
n (v+ , v&)�t>

n (n, 0) (2.6)

Consider now the case that z+�1 and z&<1. Then

:
v+ , v&

t>
n (v+ , v&) zv+

+ zv&
& �t>

n (n, 0) zn
+ (2.7)

if only one term in the sum on the left hand side is kept. On the other
hand,

:
v+, v&

t>
n (v+ , v&) zv+

+ zv&
& �t>

n (n, 0) :
v+ , v&

zv+
+ zv&

& �t>
n (n, 0)

(n+1) zn
+

1&z&

(2.8)

since z&<1, and since v+ takes on one of at most (n+1) values. By Eqs.
(1.1), (2.6) and (2.7) it follows that (after taking logarithms, dividing by n,
and letting n � �)

F(z+ , z&)=log {d+log z+ , for z+�1 and z&<1 (2.9)

Similarly,

F(z+ , z&)=log {d+log z& , for z+<1 and z+�1 (2.10)

In other words, F(z+ , z&) is a linear function in the second and fourth
quadrants in the (log z+ , log , z&)-plane. This linearity must be broken in
the first and third quadrant, and so F(z+ , z&) must be nonanalytic in
both those quadrants.

Theorem 2.2. The limiting free energy F(z+ , z&) is a non-
analytic function. In particular, it has a non-analyticity at origin of the
(log z+ , log z&)-plane, and its gradient is discontinuous along the line
z+=z& , z+�1. Moreover, for every z+<1 there are non-analyticities in
F(z+ , z&) at a critical value of z& in [z+ , 1], and for every z&<1 at a
critical value of z+ in [z& , 1].
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Proof. Suppose that z+>1 and z&>1. Without loss of generality, let
z+�z& . If only the term with v+=n is kept in �v+, v&

t>
n (v+ , v&) zv+

+ vv&
& ,

then

:
v+ , v&

t>
n (v+ , v&) zv+

+ zv&
& �t>

n (n, 0) zn
+

Thus, by taking logarithms, dividing by n and letting n � �, F(z+ , z&)�
log {d+log z+ . On the other hand, by using Eq. (2.6), and noting that
t>

n (v+ , v&)=t>
n (v& , v+),

:
v+ , v&

t>
n (v+ , v&) zv+

+ zv&
& � :

v+, v&

t>
n (v+ , v&) zv++v&

+

�2 :
v+�v&

t>
n (v+ , v&) zv++v&

+

�2 :
v+�v&

t>
n (n, 0) zv++v&

+

�n(n+1) t+
n (0) zn+1

+

since t>
n (n, 0)=t+

n (0). Again, take logarithms, divide by n, and let n � �,
this gives F(z+ , z&)�log {d+log z+ . Thus, taken together with Eqs. (2.9)
and (2.10),

F(z+ , z&)=log {d+log z+ , if z+�z& and z+�1

Similarly,

F(z+ , z&)=log {d+log z& , if z&�z+ and z&�1

Thus, the gradient of F(z+ , z&) is discontinuous along the line z+=z& in
the (z+ , z&)-plane, where z+�1.

Lastly, consider the case that both z+�1 and z&�1. By again only
keeping one term in �v+ , v&

t>
n (v+ , v&) zv+

+ zv&
& , it follows that

:
v+ , v&

t>
n (v+ , v&) zv+

+ zv&
& �t>

n (0, 0)

Thus,

F(z+ , z&)�log {d&1 (2.11)

In other words, for every fixed value of z& , F(z+ , z&)>log {d+log z+ , if
z+ is small enough, and it follows by comparison to Eq. (2.9), that there
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Fig. 2. The expected phase diagram of trees at an interface. The limiting free energy is a
linear function of log z& in the (&)-phase, and a linear function of log z+ in the (+)-phase.
The gradient of the limiting free energy is discontinuous along the line z+=z& for z+�1,
which defines a line of first order transitions separating the (&)-phase and (+)-phase. A critical
curve outlining the localized phase defines a localization�delocalization transition in this
model; presumably this is a line of continuous transitions. The critical curves c+ and c& are
expected to meet the origin, but this is not proven in the text.

is a non-analyticity in the third quadrant in F(z+ , z&) for every z&<1 at
a critical value of z+ (the locus of these critical points is denoted by c+ in
Fig. 2). By symmetry, F(z+, z&) also has a non-analyticity for every
z+<1 at a critical value of z& (the locus of these points is denoted c& in
Fig. 2). Notice that since log {d+log z+ gets arbitrarily small as z+ � 0+

(and similarly for log {d+log z&), the phase boundaries c+ and c& must
be distinct for small enough z+ or z& . K

The phase diagram of this model is well described by the results in
Theorem 2.2 in the first, second and fourth quadrants of the (z+ , z&)-plane.
The only interesting points are those along the line z+=z& for z+�1,
where the gradient of F(z+, z&) is discontinuous, and so a first order
transition occurs in the model along this line. The phases corresponding to
the delocalized regime will be called the (+)-phase and (&)-phase. The
thermodynamic properties of these phases are the same (with z+ and z&

interchanged), but they coexist along the line of first order transitions. The
situation is somewhat more complicated in the third quadrant. If both
z+ and z& are small enough, then the tree should adsorb in the interface.
This transition will localize the tree in the interface, and it is called a
localization�delocalization transition. In analogy with the adsorption transi-
tion, it seems likely that this is a continuous transition. The existence of an
adsorption transition in a model of attached trees implies the existence of
the localized phase, and from the argument in the preceding section, it
appears that the localized phase will be indistinghuishable from the adsorbed
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phase of the attached tree. The localization�delocalization occurs along
two critical curves (c+ and c& in Fig. 2), and these curves meet in the line
z+=z& in the point (z>

c , z>
c ). Thus, the conjecture that z>

c =1 seems to
indicate that c+ and c& meet in the origin in Fig. 2.

That c+ and c& are distinct in most of the third quadrant is seen as
follows. Consider first the lower bound on F(z+ , z&) derived above
(Eq. (2.3) in the proof of Theorem 2.2), namely F(z+ , z&)�log {d&1 . In
particular, if F(z+ , z&)=log {d+log z& in the (&)-phase, then a com-
parison with the bound F(z+ , z&)�log {d&1 indicates that c& should be
confined to the strip [0, 1]_[{d&1 �{d , 1]. Similarly, the phase boundary
c+ is confined to [{d&1 �{d , 1]_[0, 1]. It is in fact possible to improve
somewhat on these estimates by assuming that c+ and c& are continuous
at z+=0 and z&=0 respectively and then showing that at least one point
on each of c+ and c& are in the interior of the third quadrant in Fig. 2.

Theorem 2.3. The free energy of attached trees at an interface,
F(z+ , z&), is non-analytic in the points (0, [z+

c ]&1) and ([z+
c ]&1, 0).

Proof. Notice that

t>
n (0, z&)= :

n+1

v&=0

t>
n (0, v&) zv&

& =zn
& :

n+1

v&=0

t+
n (n&v&)[z&1

& ]n&v&

Take logarithms, divide by n and let n � �. This shows that

F(0, z&)=log z&+F+(z&1
& )

By Eq. (1.6), F+(z) is non-analytic at z=z+
c , and so F(0, z&) is non-

analytic at z&=[z+
c ]&1. A similar argument at the point (z+ , 0) com-

pletes the proof. K

Theorem 2.3 shows that if the phase boundaries c+ and c& are con-
tinuous at z+=0 and z&=0 respectively, then at least part of each are in
the interior of the third quadrant in Fig. 2. In these cases the curve c+ in
Fig. 2 could be asymptotic to z+=[z+

c ]&1, and c& could be asymptotic to
z&=[z+

c ]&1.

3. BRANCHED COPOLYMERS INTERACTING AT AN
INTERFACE

A model of branched copolymers can be constructed by coloring the
vertices in a lattice tree. There are two aspects in this coloring. The first is
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a sequence of colors, say /=(/1 , /2 ,...), and the second is a rule for assign-
ing the colors to the vertices in the tree. Some colorings of the tree can be
done using a different approach. For example, since any tree is a bipartite
graph, an alternating coloring of the tree can be defined by using the bipar-
tition of the vertex set. Block colorings of a tree can be defined by using
the connectivity properties of the tree. For example, a 2-colored tree is
said to be a model of a 2-block copolymer if there is an edge which can be
deleted to cut the tree into two monochromatic subtrees. More generally,
an N-colored tree is a model of a N-block copolymer if N&1 edges, each
with two end-vertices of different color, can be deleted to leave N mono-
chromatic subtrees. These models of block copolymers are regular if all
blocks have the same size. Notice that a 2-colored tree can also be a
regular N-block copolymer if there are N&1 edges joining vertices of dif-
ferent colors which can be deleted to leave monochromatic blocks all of the
same size (and each of either color). The number of blocks of a given color
will vary from tree to tree, and depends on the connectivity properties of
the tree. Thermodynamic limits can be taken in such a block copolymer
model by either taking the number of blocks to infinity, or by taking the
size of the blocks to infinity. Some models of adsorbing alternating and
block branched copolymers have also been discussed, (12) and I shall not
consider those here again.

A random coloring of a tree can be constructed by assigning colors in
a random sequence / to the vertices in the tree. To make this more precise,
let /i # Y be one of N colors (labeled by 1, 2,..., N ) sampled from the prob-
ability space Y. Define the product space X=Y_Y_Y_ } } } (it is also a
probability space); and an element / # X is a random sequence of colors,
each color identically distributed and independent. X has a probability
measure +(X )=1. A particularly simple assignment of colors in / to ver-
tices in a tree T is to use a lexicographic rule:(12) /1 is assigned to the
lexicographic least vertex, /2 to the next, and so on. Observe that / is an
infinite sequence, and the tree is finite with (say) n+1 vertices; the coloring
is done by assigning the first n+1 colors in /, and then discarding the
remaining part of the sequence. If each tree in an ensemble of trees is
colored by / in this way, then a model of a lexicographic quenched branched
copolymer is obtained. Several results are known for this in the averaged
lexicographic quenched ensemble, and in an annealed ensemble. In par-
ticular, existence of the limiting free energy, the existence of a critical
adsorption activity, and self-averaging, are all known for the adsorbing
averaged lexicographic quenched branched copolymer.(12) This model is of
course unphysical, and it is notable that the coloring of a tree is dependent
on its embedding. Thus, this is not a true quenched model, and it is difficult
to imagine a physical situation where it would be of relevance. One may
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imagine other models for coloring the vertices in the tree, but those models
seem quite hard. So far, this remains the only quenched branched
copolymer which have been treated with some measure of success, and it
is an open problem to find other models of quenched branched copolymers
and to treat them successfully.

Annealed models of branched copolymers at an interface is no more
interesting than the homopolymer models studied in Section 2 (and this is
also known for models of adsorbing polygons(14) and trees(12)). In par-
ticular, let the activity of a positive vertex be z+ with probability p, and y+

with probability q=1& p; and of a negative vertex be z& with probability p,
y& with probability q. That is, a vertex is colored either such that it
interacts with activities z+ and z& (with probability p), or with activities
y+ and y& (with probability q). Then the partition function in this model is

tA
n (z+ , z& ; y+ , y&)

= :
n

v+, v&=0

t>
n (v+ , v&) :

v+

w+=0
\ v+

w+ + ( pz+)w+ (qy+)v+&w+

_ :
v&

w&=0
\ v&

w&+ ( pz&)w& (qy&)v&&w&

= :
n

v+, v&=0

t>
n (v+ , v&)( pz++qy+)v+ ( pz&+qy&)v&

=t>
n ( pz++qy+ , pz&+qy&) (3.1)

Thus, the annealed free energy is given by

FA(z+ , z& ; y+ , y&)=F( pz++qy+ , pz&+qy&) (3.2)

with F(z+ , z&) defined in Theorem 2.1. The phase diagram is similar to
Fig. 2, with the necessary reinterpretations of the axes, and this model is no
more interesting than the model in Section 2. Moreover, there are localized�
delocalized transitions in this model, and a line of first order transitions
seperating a (+)-phase from a (&)-phase. This sums up the situation for
an annealed model with two types of monomers, but the situation is no
more difficult if there are more than two types of monomers. All that will
change is the replacement of the binomial factors in Eq. (3.1) with multi-
nomial factors (and more activities), and the outcome will be generally
similar.
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3.1. An Averaged Lexicographic Quenched Branched
Copolymer at an Interface

Let / # X be a random sequence of colors in the set C=[1, 2,..., N ].
Each color will be assigned an activity: z+

i will be the activity of a positive
vertex of color i, and similarly, z&

i will be the activity of a negative vertex
of color i. I shall denote these activities by

[z+
/ ]=[z+

1 , z+
2 ,..., z+

N ] (3.3)

and

[z&
/ ]=[z&

1 , z&
2 ,..., z&

N ] (3.4)

In addition, define

[z/]=[z+
/ ; z&

/ ] (3.5)

The activity of a vertex V of color /(V ) in a tree colored lexicographically
by / is given by

z(V )=z+
/(V )%(Z(V )&1)+z&

/(V ) %(&Z(V )&1)+$(Z(V ), 0) (3.6)

where %(t)=1 if t�0 and zero otherwise. In other words, z(V )=z+
/(V ) if V

is positive, z(V )=z&
/(V ) if V is negative, and z(V )=1 if V is a visit.

Let {n(/) be the set of trees with n edges and colored lexicographically
by /. It is understood that only the first n+1 colors in / is assigned to ver-
tices of trees in {n(/); the remaining colors are truncated from /. Let the
number of trees in {n(/) (counted up to translation) be tn(/). The weight
of a tree T counted by tn(/) is determined by the colors of its vertices and
the activities. In this case I do not distinghuish between positive and
negative vertices (since the trees are not attached), so weigh all vertices
by the activities [z/*]=[z1* , z2*,..., z*N], analogous to the above. Then the
weight of a tree T is

w(T )= `
V # T

z/*(V ) (3.7)

The partition function of this model is therefore

tn([z/*] | /)= :
T # {n(/)

w(T ) (3.8)

Trees counted by tn([z/*] | /1) and by tm([z/*] | /2) can be concatenated
by translating a tree from the first so that its top vertex is one step to the
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left of the bottom vertex of the second tree. Since the vertices are colored
in a lexicographic increasing sequence,

tn([z/*] | /1) tm([z/*] | /2)�tn+m+1([z/*] | /1/2) (3.9)

where /1/2 are interpreted as the first n+1 colors from /1 , followed by
m+1 colors from /2 . Take the logarithm of this, and the average
lexicograhic quench is defined by

( log tn([z/*] | /) /=|
X

d/ log tn([z/*] | /) (3.10)

This shows that if the average is taken over /1/2 in Eq. (3.9), then

( log tn([z/*] | /)) /+( log tm([z/*] | /)) /�( log tn+m+1([z/*] | /)) /

(3.11)

This superadditive inequality implies that there exists a limiting free energy
in this model, (18) defined by

F*([z/*])= lim
n � �

1
n

( log tn([z/*] | /)) / (3.12)

and it is finite since tn([z/*] | /)�tn[max[z/*]]n. Observe that positive
trees may be used here instead. Since any tree can be translated to become
a positive tree, and exactly two positive trees can be translated to the same
tree, it is the case that

tn([z/*] | /)�t+
n ([z/*] | /)�2tn([z/*] | /) (3.13)

with the consequence that

F*([z/*])= lim
n � �

1
n

( log t+
n ([z/*] | /)) / (3.14)

However, the real intent is to examine a model of attached colored
trees at an interface, with different activities on either side of the interface
defined by Eq. (3.5). If {>

n (/) is the set of attached trees colored
lexicographically by /, then the partition function in this model is

t>
n ([z/] | /)= :

T # {n
>(/)

`
V # T

z(V ) (3.15)
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with z(V ) given by Eq. (3.5). Define the weight of each tree by

w(T )= `
V # T

z(V ) (3.16)

so that t>
n ([z/] | /)=�T # {n

>(/) w(T ). To see that there is a limiting free
energy in this model of attached trees, consider t>

n ([z/] | / | [ht hb]); the
partition function of trees with heights of top and bottom vertices ht and hb .

Examine first the partition function t>
n ([z/] | / | [hh]), where both

the heights of the top and bottom vertices are the same. In particular, let
S be a tree counted by t>

n ([z/] | /1 | [hh]), and let T be a tree counted by
t>

m ([z/] | /2 | [hh]). Since the top and bottom vertices of S and T have the
same heights, T can be translated parallel to the Z=0 plane such that its
bottom vertex has X-coordinate one step bigger than the X-coordinate of
the top vertex of S (see Fig. 1), and with all other coordinates of these
vertices the same. S and T can now be concatenated into a new tree S�T
by adding a single edge between the top vertex of S and the bottom vertex
of T. Since all the vertices in T are lexicographic larger than the vertices
in S, and the colors in /1 and /2 are assigned lexicographically to S and T,
the coloring of S�T is given by the concatenated sequence /1/2 (where it
is kept in mind that /1/2 is composed of the first (n+1) colors from /1 ,
followed then by the first (m+1) colors from /2). Moreover, the weight of
S�T is w(S) w(T ), since the Z-components of all vertices are unchanged.
Therefore,

t>
n ([z/] | /1 | [hh]) t>

m ([z/] | /2 | [hh])=:
S

:
T

w(S) w(T )=:
S

:
T

w(S�T )

(3.17)

where the sum over S is over all trees counted by t>
n ([z/] | /1 | [hh]), and

the sum over T is over all trees counted by t>
m ([z/] | /2 | [hh]). But there

are also many trees counted by t>
n+m+1([z/] | /1/2 | [hh]) which are not

generated by the concatenation, therefore

t>
n ([z/] | /1 | [hh]) t>

m ([z/] | /2 | [hh])�t>
n+m+1([z/] | /1/2 | [hh])

(3.18)

The consequence of Eq. (3.18) is the following theorem.

Theorem 3.1. The limiting free energy

Fq([z/])= lim
n � �

1
n

( log t>
n ([z/] | /)) /
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of an attached tree model of a copolymer at an interface in the averaged
lexicographic quenched model exists and is a convex function in the
logarithms of each of its activities.

Proof. By Eq. (3.18),

log t>
n ([z/]) | /1 | [hh])+log t>

n ([z/] | /2 | [hh])

�log t>
n+m+1([z/] | /1 /2 | [hh])

Take the average of the quenches /1/2 in the inequality above, this
immediately shows that

( log t>
n ([z/]) | / | [hh])) /+( log t>

m ([z/] | / | [hh]))/

�( log t>
n+m+1([z/] | / | [hh])) /

Notice furthermore that

t>
n ([z/] | / | [hh])�t>

n [max
/

[z/]]n

and it follows that

lim
n � �

1
n

( log t>
n ([z/] | / | [hh])) /=Fq([z/])

exists and is finite.(18) That it is convex in the logarithm of its activities
follows from a standard application of the Cauchy�Schwartz inequality.
The same most popular arguments for [hh] and [hbht] are now used as
in Theorem 2.1 to see that

lim
n � �

1
n

( log t>
n ([z/] | /)) /=Fq([z/])

This completes the proof. K

More can be said about Fq([z/]). In particular, suppose that for each
color in C, z+

/ �1 and z+
/ �z&

/ . Consider any tree T counted by
t>

n ([z/] | /). T can be translated normal to the interface until all its vertices
are positive vertices, and this construction changes at most n+1 trees into
one tree with positive vertices. Since z+

/ �z&
/ , this shows that

t>
n ([z/] | /)�(n+1) t+

n ([z+
/ ] | /) (3.19)
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On the other hand, every tree counted by t+
n ([z+/] | /) also contributes to

t>
n ([z/] | /), which means that

t>
n ([z/] | /)�t+

n ([z+
/ ] | /) (3.20)

Therefore, if the logarithms of Eqs. (3.19) and (3.20) are taken, and if those
inequalities are averaged with respect to /, divided by n, and n � �, then
it follows that Fq([z/]) is only a function of the activities [z+

/ ] (and is
independent of [z&

/ ]). In other words, under the conditions that z+
/ �z&

/ ,
and z+

/ �1 for each /, it is energetically favourable to the tree to have all
of its vertices in one phase. In addition, since there is no entropic disadvan-
tage to translating the tree, it will delocalize into the prefered phase.

Alternatively, if any activity in [z&
/ ] is large enough, then Fq([z/])

will be dependent on it. In particular, if wi (/) is the number of vertices of
color i in the first n+1 colors in the sequence /, then since there is at least
one tree with all vertices negative, and if the logarithm is taken of the
above, and the average

t>
n ([z/]) | /)� `

i # C

[z&
i ]wi (/) (3.21)

and if the logarithm is taken of the above, and the average over all / is
done, then

( log t>
n ([z/] | /)) /�

n
N \ :

i # C

log z&
i + (3.22)

Dividing by n, and taking n � � gives

Fq([z/]�
1
N \ :

i # /

log z&
i + (3.23)

and so if one of the z&
/ is increased enough, then Fq([z/]) will be depen-

dent on it.

Theorem 3.2. Suppose that z+
i �z&

i z+
i �1 for each i # /, then

Fq([z/]) is a function only of [z+
/ ]. On the other hand, if z&

i is now
increased (where i is fixed), then Fq([z/]) will become a function of z&

i ,
for large enough values of z&

i . This is also true if the roles of [z+
/ ] and

[z&
/ ] are interchanged.

Thus, the (2N-dimensional) phase space of this model has some critical
surfaces. In particular, it appears that in the subspaces z+

i �z&
i and z&

i �z+
i

the free energy is dominated by positive and negative trees respectively,
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with no intersections with the interface. These phases are the positive and
negative phases identified for the model in Section 2. Increasing any one of
the activities z&

i will take the positive phase through a transition, which
presumably results in a phase with vertices of color i predominantly
negative, and the remaining vertices predominantly positive. This is a
localized phase, and there is a phase boundary into it for each i.

There also is a localization�delocalization transition in this model; in
particular, in the subspaces defined by z+

i =z+ and z&
i =z& for all i # / the

model in Section 2 is recovered, and the phase diagram in Fig. 2 is there-
fore a section through the phase diagram in the model here.

3.2. Self-Averaging in the Lexicographic Quenched Branched
Copolymer at an Interface

In this section the issue of self-averaging in the above model is con-
sidered. The proof that this model is self-averaging is similar to the proof
that the adsorbing lexicographic quenched branched polymer model is self-
averaging, (12) and it has two steps. In the first instance, using concatenation,
I show that for almost all sequences of colors /0 sampled from X, it is the
case that lim infn � �[log t>

n ([z/] | /0)]�n�Fq([z/]). Next, it is shown
that the averaged quenched free energy is also an upper bound on the lim
sup for almost all sequences /0 # X. Together, these two results show that
the model is indeed self-averaging.

Theorem 3.3. Let /0 # X be a random sequence of independent
identically distributed colors. Then

lim inf
n � �

1
n

log t>
n ([z/] | /0)�Fq([z/])

with probability one.

Proof. Define n=mM+r, and cut the sequence /0 into subsequences
[/i ]�

i=1 each of length M, and let /r be the first r colors in the (m+1)th
subsequence. Define the following:

[v/]#[v+
1 , v+

2 ,..., v+
N ; v&

1 , v&
2 ,..., v&

N ]

where v+
i is the number of positive vertices of color i, etc. Then

t>
n ([z/] | /)= :

[v/]

t>
n ([v/] | /)[z/][v/]

where [z/][v/] is interpreted as [z+
1 ]v1

+
[z+

2 ]v2
+

} } } [z&
N ]vN

&
.
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Concatenate trees counted by t>
M&1([w/i

] | /i | [hh]) for i=1, 2,..., m,
and one tree counted by t>

n ([w/r
] | /r | [hh]) to find a tree counted by

t>
n ([v/0

] | /0 | [hh]), using the construction described before Eq. (3.17).
This shows that

_`
m

i=1

t>
M&1([w/i

] | / i | [hh])& t>
r ([w/r

] | /r | [hh]) $ \[v/0
]&:

i

[w/i
]+

�t>
n ([v/0

] | /0 | [hh])

Multiply this by [z/][v/0
], and sum over all the [v/0

]; this shows that

_`
m

i=1

t>
M&1([z/i

] | /i | [hh])& t>
r ([z/r

] | /r | [hh])�t>
n ([z/0

] | /0 | [hh])

Fix M, and choose the most popular value of [hh]=[h*h*] in
t>

M&1([z/i
] | /i | [hh]). Take the logarithm of the above, divide by n, and

now take the lim inf of the right hand side. Then n � � and this shows
that

lim inf
m � �

1
m

:
m

i=1

1
M

log t>
M&1([z/i

] | /i | [h*h*])

�lim inf
n � �

1
n

log t>
n ([z/0

] | /0 | [h*h*])

By the weak law of large numbers, (20) it follows for almost all random
sequences /0 that the left hand side above is the averaged lexicographic
quenched free energy

� 1
M

log t>
M&1([z/] | / | [h*h*])�/

�lim inf
n � �

1
n

log t>
n ([z/0

] | /0 | [h*h*])

�lim inf
n � �

1
n

log t>
n ([z/0

] | /0)

The same arguments as in Theorem 2.1 can now be applied to the left hand
side of the last inequality to remove [h*h*]. Taking M � � then gives

Fq([z/])�lim inf
n � �

1
n

log t>
n ([z/0

] | /0)

which completes the proof. K
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Since X is a probability space with uniform measure +(X )=1, the
averaged lexicographic quenched free energy is defined by

Fq([z/])= lim
n � �

1
n |

X
d/ log t>

n ([z/] | /) (3.24)

In addition, Theorem 3.3 shows that

Fq([z/])�lim inf
n � �

1
n

log t>
n ([z/] | /0) (3.25)

for almost all /0 # X. In fact, this last inequality is an equality.

Theorem 3.4. For almost all /0 # X,

Fq([z/])=lim inf
n � �

1
n

log t>
n ([z/] | /0)

Proof. First apply Fatou's lemma to Eq. (3.24):

Fq([z/])= lim
n � �

1
n |

X
d/ log t>

n ([z/] | /)

�|
X

d/ lim inf
n � �

1
n

log t>
n ([z/] | /) (3.26)

Next, decompose X into disjoint sets X=X& _ X0 _ X+ by defining

lim inf
n � �

1
n

log t>
n ([z/] | /0)=Fq([z/]), if /0 # X0

lim inf
n � �

1
n

log t>
n ([z/] | /0)<Fq([z/]), if /0 # X&

lim inf
n � �

1
n

log t>
n ([z/] | /0)>Fq([z/]), if /0 # X+

By Eq. (3.25) above, +(X&)=0. On the other hand, suppose that +(X+)=
a>0, so that +(X0)=1&a. Then

|
X

d/ lim inf
n � �

1
n

log t>
n ([z/] | /)>aFq([z/])+(1&a) Fq([z/])=Fq([z/])
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This is in contradiction with Eq. (3.26) above, so that +(X+)=0. Thus,

lim inf
n � �

1
n

log t>
n ([z/] | /0)=Fq([z/])

for almost all /0 # X. K

The only remaining issue is to show that the lim inf in Theorem 3.4
can be replaced by a limit.

Theorem 3.5. For almost all /0 # X,

Fq([z/])= lim
n � �

1
n

log t>
n ([z/] | /0)

Proof. Suppose that

lim inf
n � �

1
n

log t>
n ([z/] | /)>Fq([z/])

for any / # U, where +(U )>0. The proof proceeds by showing that this
gives a contradiction. There exists a =/>0 such that for any / # U, there is
a convergent sequence

1
ni

log t>
ni

([z/] | /)>Fq([z/])+=/ �2

for an infinite set of integers [ni ]. For each / # U, define

Tn(/)=
1

n i+1

log t>
ni+1

([z/] | /)>Fq([z/]), if n i<n�ni+1

Then limn � � Tn(/) exists for each / # U. For all values of n, and / # U,

Tn(/)>Fq([z/])+=/ �2.

Put Tn(/)=Fq([z/]) if / � U, then Tn(/) is measurable on X, and by the
Lebesque Dominated Convergence Theorem,

|
U

d/ lim
n � �

Tn(/)= lim
n � � |

U
d/ Tn(/)= lim

i � � |
U

d/
1
ni

log t>
ni

([z/] | /)
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Thus, integrating now over all of X,

lim
n � � |

X
d/

1
n

log t>
n ([z/] | /)=(1&+(U )) Fq([z/])++(U )(Fq([z/])

+|
U

d/[=/�2])>Fq([z/])

in contradiction with Eq. (3.24). K

4. A MODEL OF INTERACTING BRANCHED BLOCK
COPOLYMERS AT AN INTERFACE

Let A be a red tree with n edges, and B be a blue tree with n edges,
both rooted at the vertex v in the Z=0 plane. Suppose furthermore that
A is a positive tree, and B is a negative tree. Thus, a model of a branched
diblock copolymer at an interface with each block confined to either side
of the interface is obtained. A contact between the red and blue blocks is
a vertex in the Z=0 plane which are in both blocks (that is, it is a visit
shared between the blue and red subtrees). Let t$

n, n(v+, v&, c) be the num-
ber of such trees, with n edges each in the red and blue subtrees, with v+

positive red vertices, and v& negative blue vertices, and with c contacts
(shared visits) in the Z=0 plane (the common root of the two blocks are
not counted as a contact or shared visit). One such tree is illustrated in Fig. 3.

Fig. 3. An attached tree model of a 2-block copolymer which interacts at the interface. The
tree is rooted at O, and monomers in the blocks are indicated by h and m. There is one
shared visit M. The height of the top vertex in the block with vertices denoted by h is hr ,
while it is hb for the top vertex of the block with vertices m. The difference between the projected
images of the top vertices in the Z=0 plane is ha .
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The partition function of this model is

t$
n, n(z+ , z& , z)= :

n

v+, v&=0

:
n

c=0

t$
n, n(v+ , v& , c) zv+

+ zv&
& zc (4.1)

The activity z is conjugate to the number of contacts. The existence of a
thermodynamic limit in this model is shown by using a ``double concatena-
tion'' and most popular height arguments.

Let hr be the height of the top vertex of the positive block above the
Z=0 plane, and hb be the height of the top vertex of the negative block
below the Z=0 plane. Let ha be the difference between the projected
images of the top vertices of the red and blue blocks in the Z=0 plane (ha

is a (d&1)-dimensional vector). Define t$
n, n(v+ , v& , c | [hr hb ha]) as the

number of trees counted by t$
n, n(v+ , v& , c), and with heights and difference

[hrhbha] between top vertices. A similar set of definitions for the bottom
vertices of the two blocks define the trees counted by t$

n, n(v+ , v& , c |
[(hrhbha]), and with bottom vertices of heights and difference [brbbba]
between bottom vertices; the number of such trees is t$

n, n(v+ , v& , c |
[hrhbha][brbb ba]). Define the partition function

t$
n, n(z+ , z& , z | [hrhbha][brbbba])

= :
n

v+ , v&=0

:
n

c=0

t$
n, n(v+ , v& , c | [hrhbha][br bbba]) zv+

+ zv&
& zc (4.2)

Theorem 4.1. The limit

F(z+ , z& , z | [h1h2 h])= lim
n � �

1
n

log t$
n, n(z+ , z& , z | [h1h2h][h1h2h])

exists for all finite z+>0, z&>0 and z>0. Moreover, it is convex in each
argument.

Proof. Consider a tree A counted by t$
n, n(v+&v0 , v&&v1 , c&c0 |

[h1h2h][h1h2 h]) and a tree B counted by t$
m, m(v0 , v1 , c0 | [h1h2h]

[h1h2h]). Translate B parallel to the Z=0 plane until the bottom vertices
of both its blocks are one step removed in the X-direction from the corre-
sponding top vertices of the blocks of A. Since the heights and difference
of both these trees are [h1h2h], this is possible. Join the two trees into one
tree by adding two edges; one between the top and bottom vertices of the
red blocks, and the second between the top and bottom vertices of the blue
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block; and change the root of the second tree into a contact. This construc-
tion gives a tree counted by t$

n+m+1, n+m+1(v+ , v& , c | [h1h2h][h1h2h]),
and since the deleted root can be chosen in at most n+m+1 ways, the
outcome is the following inequality:

:
v+

v0=0

:
v&

v1=0

:
c

c0=0

t$
n, n(v+&v0 , v&&v1 , c&c0 | [h1 h2 h][h1h2 h])

_t$
m, m(v0 , v1 , c0 | [h1 h2h][h1h2h])

�(n+m+1) t$
n+m+1, n+m+1(v+ , v& , c+1 | [h1h2h][h1 h2h])

Multiply this inequality by zv+
+ zv&

& zc, and sum over v+ , v& and over c to
obtain

t$
n, n(z+ , z& , z | [h1 h2h][h1h2h]) t$

m, m(z+ , z& , z | [h1 h2h][h1 h2h])

�z&1(n+m+1) t$
n+m+1, n+m+1(z+ , z& , z | [h1h2h][h1 h2h])

Thus, z&1t$
n&1, n&1(z+ , z& , z | [h1h2h][h1h2h]) satisfies a generalized

supermultiplicative inequality, and moreover, it is bounded by {2n
d [max

[z+ , z& , z]]2n (since all trees are bounded in this way). Consequently, the
limit

lim
n � �

1
n

log t$
n, n(z+ , z& , z | [h1h2h][h1 h2h]) (4.3)

exists and is finite as claimed.(19) Convexity of F(z+ , z& , z | [h1h2 h]) can
be shown by applying the Cauchy�Schwartz inequality to t$

n, n(z+ , z& , z |
[h1h2h][h1h2 h]). K

Next, notice that there are most popular values for [h1h2 h] in Eq. (4.3),
and let these be [h1*h2*h*], and define the limiting free energy

F(z+ , z& , z)= lim
n � �

1
n

log t$
n, n(z+ , z& , z | [h1*h2*h*][h1*h2*h*]) (4.4)

Let the most popular values of [hrhbha][brbb ba] in t$
n, n(z+ , z& , z |

[hrhbha][brbb ba]) be [hr*hb*ha*][hr*hb*ha*]. The double concatenation in
the proof of Theorem 4.1 now shows that

[t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*])]2

�z&1(2n+1) t$
2n+1, 2n+1(z+ , z& , z | [hr*hb*ha*][hr*hb*ha*])

�z&1(2n+1) t$
2n+1, 2n+1(z+ , z& , z | [h1*h2*ha*][h1*h2*h*] (4.5)
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Thus

lim sup
n � �

1
n

log t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*])�F(z+ , z& , z) (4.6)

In addition, since [hr*hb*ha*][br*bb*ba*] are the most popular values,

t$
n, n(z+ , z& , z | [h1*h2*h*][h1*h2*h*])

�t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*]) (4.7)

and thus

F(z+ , z& , z)�lim inf
n � �

1
n

log t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*]) (4.8)

Equations (4.6) and (4.8) imply the following lemma:

Theorem 4.2.

F(z+ , z& , z)= lim
n � �

1
n

log t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*])

These results can finally be put together to prove existence of the limit-
ing free energy.

Theorem 4.3. The limiting free energy

F(z+ , z& , z)= lim
n � �

1
n

log t$
n, n(z+ , z& , z)

exists. Moreover, it is convex in all its arguments.

Proof. Notice that

t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*])

�t$
n, n(z+ , z& , z)

= :
[hrhbha]

:
[brbbba]

t$
n, n(z+ , z& , z | [hrhbhb][brbbba])

�(2n)2d+2 t$
n, n(z+ , z& , z | [hr*hb*ha*][br*bb*ba*])
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since [hrhbha] takes at most (2n)d+1 distinct values. Existence of the free
energy now follows from Theorem 4.1 and the squeeze theorem for
limits. K

It is not difficult to see that there is a critical value of z where the two
blocks interact to ``adsorb'' onto one another through the interface. In
particular, observe that if z�1, then

t$
n, n(z+ , z& , z)�t$

n, n(0, 0, n) zn (4.9)

where only the term corresponding to the conformation with both blocks
identical to one another (and both in the interface) was kept in the parti-
tion function, of the left. Since t$

n, n(0, 0, n)=t (d&1)
n (the number of trees

with n edges in (d&1) dimensions), this shows that

F(z+ , z& , z)�log {(d&1)+log z, if z�1 (4.10)

The proof that there are phase boundaries relies on the above, and the
following theorem.

Theorem 4.4. Suppose that z�1. Then

F(z+ , z& , z)={
2 log {d+log(z+ z&)

for all z+>1�z+
c and z&>1�z+

c

log {d+F+(1�z&)+log(z+z&)

for all z+>1�z+
c and z&<1�z+

c

log {d+F+(1�z+)+log(z+z&)

for all z+<1�z+
c and z&>1�z+

c

In addition, if z=1 then

F(z+ , z& , 1)=F+(1�z+)+F+(1�z&)+log(z+z&)

for all z+<1�z+
c and z&<1�z+

c

and if z<1 then

F(z+ , z& , z)�F+(1�z+)+F+(1�z&)+log(z+z&)

F(z+ , z& , z)�F+(- z�z+)+F+(- z�z&)+log(z+z&)

if both z+<1�z+
c and z&<1�z+

c .
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Proof. Let t+
n (v) be the number of positive trees with n edges and v

visits, and t&
n (v)=t+

n (v) be the number of negative trees with n edges and
v visits. Observe in the first instance that

t$
n, n(n, n, 0)=t+

n (1) t&
n (1)=[t+

n (1)]2

t$
n, n(n, v1 , 0)�t+

n (1) t&
n (n+1&v&) (4.11)

t$
n, n(v+ , n, 0)�t+

n (n+1&v+) t&
n (1)

In addition, if a diblock tree counted by t$
n, n(v+ , v& , c) is cut in its root,

and the two blocks are translated each one step away from the interface
while new edges are inserted to reconnect the blocks to the root, the
following inequality is found:

t$
n, n(v+ , v& , c)�t$

n+1, n+1(n+1, n+1, 0) (4.12)

and if only the positive or only the negative block is translated, then

t$
n, n(v+ , v& , c)�{t$

n+1, n(n+1, v& , 0)
t$

n, n+1(v+ , n+1, 0)
(4.13)

Since z�1, it follows that t$
n, n(z+ , z& , z)�t$

n, n(z+ , z& , 1) so that

t$
n, n(z+ , z& , z)�n2 :

n+1

v+v&=0

t+
n (n+1&v+) t&

n (n+1&v&) zv+
+ zv&

&

=n2t+
n (1�z+) t&

n (1�z&)[z+z&]n+1

Take logarithms, divide by n and let n � �. Then

F(z+ , z& , z)�F+(1�z+)+F+(1�z&)+log(z+ z&) (4.14)

Notice now that from Eq. (4.11) above,

t$
n, n(z+ , z& , z)� :

n

v+, v&=0

t$
n, n(v+ , v& , 0) zv+

+ zv&
& �[t+

n (1)]2 zn
+zn

&

where only those terms with zero contacts were kept. Thus, by taking
logarithms, dividing by n and letting n � �,

F(z+ , z& , z)�2 log {d+log(z+z&)

which together with Eq. (4.14) and the fact that F+(1�z)=log {d if
z>1�z+

c proves the first equality in the theorem.
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Next, suppose that z&�1�z+
c and z+�1�z+

c . Then

t$
n, n(z+ , z& , z)� :

n

v&=0

t$
n, n(n, v& , 0) zn

+zv&
&

= :
n

v&=0

t+
n (1) t&

n (n+1&v&) zn
+zv&

&

=t+
n (1) zn

+ t&
n (1�z&) zn+1

&

Taking logarithms, dividing by n, and letting n � � shows that

F(z+ , z& , z)�log {d+F+(1�z&)+log(z+ z&)

Since F+(1�z+)=log {d if z+�1�z+
c in Eq. (4.14) above, this proves the

second equation of the theorem. The third equation is proven following the
above argument again, but with z+ and z& interchanged.

Lastly, consider the case that both z+<1�z+
c and z&<1�z+

c . A lower
bound on F(z+ , z& , z) can be obtained if only those diblock-trees with
every visit a contact between the blocks are counted. In particular, since
v+ , v& and c satisfies the relation 2c+v++v&=2n if all visits are contacts,

t$
n, n(z+ , z& , z)� :

n

v+ , v&=0

t+
n (n&v+) t&

n (n&v&) zv+
+ zv&

& - z2n&(v+&v&)

=t+
n (- z�z+) t&

n (- z�z&)(z+z&)n

Thus

F(z+ , z& , z)�F+(- z�z+)+F+(- z�z&)+log(z+z&) (4.15)

If z=1, then together with Eq. (4.14) above this shows that

F(z+ , z& , 1)=F+(1�z+)+F+(1�z&)+log(z+z&)

if both z+<1�z+
c and z&<1�z+

c . K

Theorem 4.4 shows that F(z+ , z& , z) is a non-analytic function if
z+ and of z& for all fixed values of z�1. The phase boundaries are
particularly simple if z=1; the two lines z+=1�z+

c and z&=1�z+
c are

adsorption transitions of the positive block and of the negative block, into
the interface respectively; see Fig. 4.

If z�1, then the situation is the same, but the arguments not as
straight forward. Since F(z+ , z& , z) is a non-analytic function if z+ and
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Fig. 4. The phase diagram of F(z+ , z&, z) if z�1. The location of the dashed critical
curves in the third quadrant is uncertain, and it is also not known that there is a quadruple
point, or two triple points, in this diagram.

of z& for all fixed values of z�1, it follows again that two critical lines
(one corresponding to adsorption of the positive block, and the other to
adsorption of the negative block) intersect in the (z+ , z&)-plane (with
z<0). It follows immediately from Theorem 4.4 that parts of the curves are
half-lines, meeting in the point (z+ , z&)=(1�z+

c , 1�z+
c ); namely z+=1�z+

c

with z&�1�z+
c , and z&=1�z+

c with z+�1�z+
c . Furthermore, the bounds

on F(z+ , z& , z) if z+<1�z+
c , z&<1�z+

c in Theorem 4.4 implies that the
continuations of these half-lines are confined to the region A _ B where
A=[(z+ , z&) | - z�z+

C �z+�1�z+
c , and z&�1�z+

c ], and B=[(z+ , z&) |
- z�z+

c �z&�1�z+
c , and z+�1�z+

c ]. It is in fact the case that the phase
diagram in this case is also given by Fig. 4. This I demonstrate in
Theorem 4.5.

Theorem 4.5. F(z+ , z& , z) is independent of z for all z�1.

Proof. Consider first the fact that t$
n, n(z+ , z&, z) is non-decreasing

with increasing z. Thus

t$
n, n(z+ , z& , z)�t$

n, n(z+ , z& , 0) (4.16)
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On the other hand, consider a tree T counted by t$
n, n(v+ , v& , c). Separate

T into a positive tree T+ and a negative tree T& by cutting it in the root.
Define the top visit of T+ as its lexicographic most visit, and the bottom
visit of T& as its lexicographic least visit. Translate T+ and T& such that
the bottom visit of T& coincide with the top visit of T+ , and join them
into a new tree S rooted in this visit. Then S has no contacts in the mem-
brane. Since each of T+ and T& has at most n+1 visits each, and since
the root was present at most at (n+1)2 positions (before the construction),
it follows that

t$
n, n(v+ , v& , c)�(n+1)4 t$

n, n(v+ , v& , 0)

Multiplying by zv+
+ zv&

& and summing shows that for z�1,

t$
n, n(z+ , z& , z)�(n+1)4 t$

n, n(z+ , z& , 0) :
n

c=0

zc (4.17)

By taking logarithms, dividing by n and letting n � � in the inequalities
in Eqs. (4.16) and (4.17), it follows that

F(z+ , z& , z)=F(z+ , z& , 0), if z�1

This completes the theorem. K

The density of contacts between the two blocks is defined by

(c) =
�

� log z
F(z+ , z& , z) (4.18)

By Theorem 4.5 this is zero if z<1, and the phase diagram is given by
Fig. 4. On the other hand, Eq. (4.10) guarantees that F(z+ , z& , z) will be
dependent on z if z is large enough, for any finite values of (z+ , z&), and
so there is a transition where one block adsorbs into the visits of the other.
The phase diagram can thus be described as follows: There exists a critical
value of z, say zc(z+ , z&), such that if z<zc(z+ , z&), then the density of
contacts between the two blocks is zero. There exists four phases in this
regime, one delocalized phase where both blocks have zero densities of
visits; two partially localized phases where either of the two blocks (but not
both) has a density of visits; and finally a localised phase where both
blocks are localised in the interface with a density of visits. Notice that the
density of contacts between the two blocks is still zero in this phase as well.
Next, if z>zc(z+ , z&), then there are one or perhaps more, phases with a
non-zero density of contacts. In analogy with the results in Eq. (1.7), one
should expect that zc(z+ , z&)>1 for all finite values of (z+ , z&).
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4. CONCLUSIONS

Perhaps the most interesting open question for trees at an interface is
the conjecture that z >

c =1. If this turns out to be true, then there will be
some implications for the models discussed above. For example, the
localization-delocalization critical curves in Fig. 2 would meet in the origin,
and attached trees would then be critical with respect to localization, and
with respect to the delocalized (+)-phase and (&)-phase. By the way, if
the above is correct, then the location of the critical curves c& and c+ in
Fig. 2 is still an interesting question. Can it be shown that they are in the
interior of the third quadrant of Fig. 2, and only intersects the axes in the
origin? Theorem 2.3 shows that, if these curves are continuous at z+=0
and z&=0, that there must be points on them in the interior of the third
quadrant.

The existence and self-averaging properties of the limiting free energy
of attached trees colored lexicographically at an interface was examined in
Section 3. In addition, the presence of some transitions in this model was
pointed out. In particular, there are (+)- and (&)-phases analogous to
those encountered in the model in Section 2. However, it seems that there
are phases with some colors on one side of the interface, and other colors
on the opposite side. Such a phase is necessarily localized (as opposed to
the (+)- and (&)-phases which are delocalized). While the arguments
preceding Eq. (3.23) seems to indicate that increasing any one activity z&

i

associated with negative vertices will drive the model from a delocalized
(+)-phase to a localized phase (in the lexicographic quenched ensemble),
it is not obvious that there are more than one localized phase. Indeed, the
fact that colors can be interchanged seems to suggest that there is only one
such localized phase, and that the model will be driven into this phase if
it has some large activities for positive vertices of a given color, and some
large activities for negative vertices of a different color.

Lastly, the interaction of two branched polymers through a membrane
was model by a pair of trees interacting via shared visits in the interface.
In this case I show that there is an adsorption-like transition of one tree
onto the visits of the other, regardless of the quality of the solvents on
either sides of the membrane. In analogy with a positive tree adsorbing
onto a plane (with critical activity z+

c >1, see Eq. (1.7)), it seems that one
should expect that the critical activity here is strictly bigger than one:
zc(z+ , z&)>1, but a proof for this fact is still outstanding.
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